2022届河北省金太阳高一年级4月联考(22-03-387A)数学试卷答案,知嘛答案网已经编辑汇总了2022届河北省金太阳高一年级4月联考(22-03-387A)数学试卷答案的各科答案和试卷,更多试卷答案请关注知嘛答案。
23.(1)依题意,2x-5-|x+2|<2(2分)当x<-2时,原式化为5-2x+x+2<2,解得x>5,无解;当-2≤x≤。时,原式化为5-2x-x-2<2,解得x>2,故
故MP|2+|NP[文]21.(1)要证:[章]2(x+1)ln([来]x+1)+1≤(x[自]+1)2,分)即证[知]:2+x-(x+1[嘛])n(x+1)≥0[答],令g(x)=+x[案]-(x+1)ln([网]x+1),示一,([文]2分)to(x)=[章]x-In(x+1)[来]=m(x)而当x∈[自][0,+∞)时,m[知](x)=1-~1所[嘛]以g(x)在[0,[答]+∞)上单调递增,[案]故(x)≥(0)=[网]0,(3分)故g([文]x)在[0,+∞)[章]上单调递增,g(x[来])≥g(0)=0,[自]即当x∈[0,+m[知])时,2(x+1)[嘛]ln(x+1)+1[答]≤(x+1)2;([案]5分)2x+2-4[网](2x +2)In(r +1)<2a[文]x +x-;2ar+.[章]x cosc(2)ln[来](x+1)≤由(1[自])可知,2(x+1[知])ln(x+1)+[嘛]1≤(x+1)2,[答]故只需x2+2x≤[案]2ax+x2-2x[网]cox,只需x≤a[文]x- r cosC即(a-1[章])x- T cos≥0;ih([来]r)=(a-1)x[自]-xcosx=x([知]a-1-cosx)[嘛].bi,i(6分)[答]h(x)=x(a-[案]1-cx)>[网]0,则a-1-9x[文]>0,a≥1[章]+c0x,a≥2若[来]h(x)≥0,必有[自]2(x+1)n(x[知]+1)+1≤(x+[嘛]1)2恒成立,故当[答]a≥2时,2(x+[案]1)hn(x+1)[网]+1≤(x+1)2[文]恒成立;(8分下面[章]证明a<2时[来],2(x+1)ln[自](x+1)≤2ax[知]+x2-2 r cos不恒成立令f[嘛]1(x)=(x+1[答])hn(x+1)-[案]x,f1(x)=l[网]n(x+1),当x[文]>0时,f1[章](x)=ln(x+[来]1)>0,f[自]1(x)在区间[0[知],1]上单调递增,[嘛]故f1(x)≥f1[答](0)=0,即(x[案]+1)hn(x+1[网])-x≥0则ax+[文]2 coS.0(x+1[章])ln(x+1)≤[来]ax+22.co8[自]r-ar令(x)=[知]ax+x2r coST+++2所[嘛]以t(x)=a+x[答]-1-cosx+ r sIn2,I"(x)=l+sin[案] x +sin x +r 0,而r(0)=a[网]-2<0,([文]0)=0,则一定存[章]在区间(0,m),[来]当x∈(0,m)时[自]t(x)<0[知],政(2x+2)1[嘛]n(x+1)≤2a[答]x+x2-2 r cos.a不恒成立[案]综上所述,实数a取[网]值范围是[2,+∞[文])